Publications
Dandois, J. P., M. Baker, M. Olano, G. G. Parker, and E. C. Ellis.
2017. What is the point? Evaluating the structure, color, and
semantic traits of computer vision point clouds of vegetation.
Remote Sensing
9:355. [download]
Dandois, J.,M. Olano, and E.C. Ellis. 2015. Optimal Altitude,
Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest
Structure. Remote Sensing 7(10): 13895-13920. [download]
Dandois, J.P., D. Nadwodny, E. Anderson, A. Bofto, M. Baker, and E.C. Ellis.
2015. Forest census and map data for two temperate deciduous forest edge
woodlot patches in Baltimore, Maryland, USA.
Ecology 96:1734-1734.
[download]
[download
dataset]
Zahawi, R., J.P. Dandois, K.D. Holl, D. Nadwodny, L.J. Reid, and
E.C.
Ellis. 2015. Using lightweight unmanned aerial vehicles to monitor tropical
forest recovery.
Biological Conservation 186:287–295. [download]
Pirokka, M., E. C. Ellis, and P. D. Tredici. 2015. Personal Remote
Sensing: Computer Vision Landscapes. Pages 178-187 in A. Fard and T.
Meshkani, editors. New Geographies #7: Geographies of
Information. Harvard Graduate School of Design, Cambridge, MA. [download]
Dandois, J. P. and E. C. Ellis. 2013. High spatial
resolution three-dimensional mapping of vegetation spectral dynamics using
computer vision. Remote Sensing of Environment 136:259-276. [download]
[blog
post]
Dandois, J. P. and E. C. Ellis. 2010. Remote sensing of
vegetation structure using computer vision.
Remote Sensing
2(4):1157-1176. [download]
|